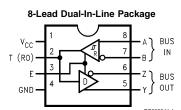
National Semiconductor

DS96177 RS-485/RS-422 Differential Bus Repeater


General Description

The DS96177 Differential Bus Repeater is a monolithic integrated device designed for one-way data communication on multipoint bus transmission lines. This device is designed for balanced transmission bus line applications and meets EIA Standard RS-485 and RS-422A. The device is designed to improve the performance of the data communication over long bus lines. The DS96177 has an active high Enable.

The DS96177 features positive and negative current limiting and TRI-STATE® outputs for the receiver and driver. The receiver features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of 200 mV over a common mode input voltage range of -12V to +12V. The driver features thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 160°C. The driver is designed to drive current loads up to 60 mA maximum.

The DS96177 is designed for optimum performance when used on transmission buses employing the DS96172 and

Connection Diagram

Top View Order Number DS96177CN See NS Package Number N08E DS96174 differential line drivers, DS96173 and DS96175 differential line receivers, or DS96176 differential bus transceivers.

Features

- Meets EIA Standard RS-422A and RS-485
- Designed for multipoint transmission on long bus lines in noisy environments
- TRI-STATE outputs
- Bus voltage range -7.0V to +12V
- Positive and negative current limiting
- Driver output capability ±60 mA max
- Driver output capability 100 mA ma
 Driver thermal shutdown protection
- Receiver input high impedance
- Receiver input sensitivity of ±200 mV
- Receiver input hysteresis of 50 mV typical
- Operates from single 5.0V supply
 Low power requirements

Function Table

Differential Inputs	Enable	Outputs			
A–B	E	T Y Z			
$V_{ID} \ge 0.2V$	Н	Н	Н	L	
$V_{ID} \leq -0.2V$	Н	L	L	Н	
Х	L	Z	Z	Z	

Note: T is an output pin only, monitoring the BUS (RO).

- H = High Level
- L = Low Level X = Immaterial
- Z = High Impedance (off)

DS96177 RS-485/RS-422 Differential Bus Repeater

October 1993

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

DS009644

© 1999 National Semiconductor Corporation

Absolute Maximum Ratings (Note 2)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Range	
Ceramic DIP	–65°C to +175°C
Molded DIP	–65°C to +150°C
Lead Temperature	
Ceramic DIP (Soldering, 60 sec.)	300°C
Molded DIP (Soldering, 10 sec.)	265°C
Maximum Power Dissipation (Note 1) a	t 25°C
Molded Package	930 mW
Supply Voltage	7.0V
Input Voltage	5.5V

Recommended Operating Conditions

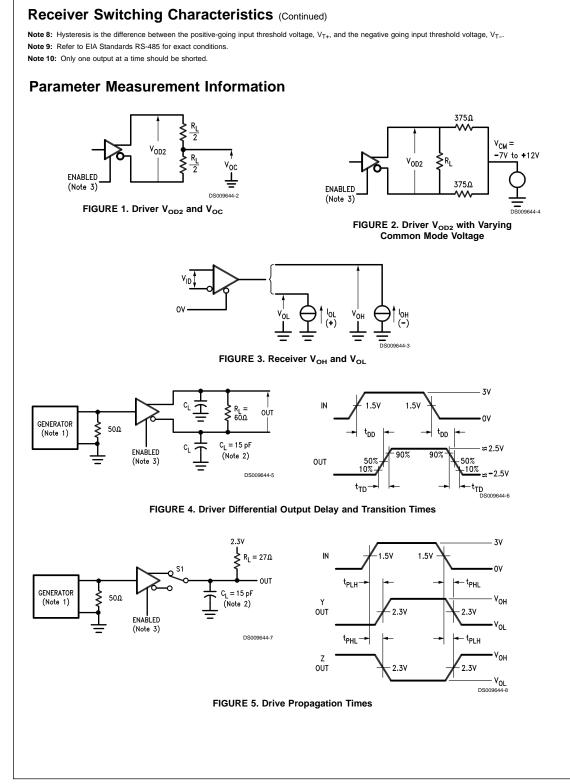
	Min	Тур	Max	Units
Supply Voltage (V _{CC})	4.75	5.0	5.25	V
Voltage at any Bus Terminal				
(Separately or Common	-7.0		12	V
Mode) (V _I or V _{CM})				
Differential Input Voltage				
(V _{ID})			±12	V
Output Current HIGH (I _{OH})				
Driver			-60	mA
Receiver			-400	μA
Output Current LOW (I _{OL})				
Driver			60	mA
Receiver			16	
Operating Temperature (T _A)	0	25	70	°C
Note 1: Derate molded DIP package 7.	.5 mW/°C	above a	25°C.	

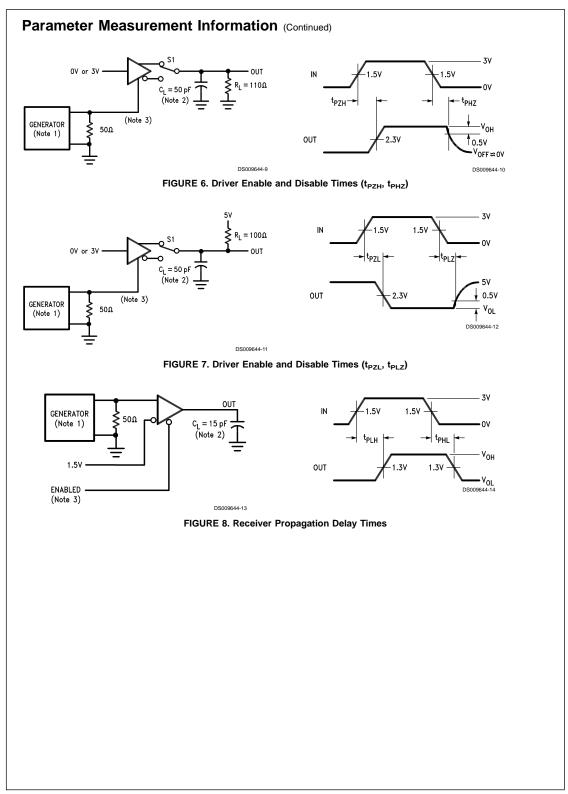
Symbol	Parameter	Condi	tions	Min	Тур	Max	Units
DRIVER SE	ECTION				71		
VIH	Input Voltage HIGH			2.0			V
V _{II}	Input Voltage LOW					0.8	V
VIC	Input Clamp Voltage	I ₁ = -18 mA				-1.5	V
V _{OD1}	Differential Output Voltage	$I_{O} = 0 \text{ mA}$				6.0	V
V _{OD2}	Differential Output Voltage	$R_1 = 100\Omega$, Figure 1		2.0	2.25		V
0021		$R_1 = 54\Omega$, Figure 1 a	and Figure 2	1.5	2.0		
$\Delta V_{OD2} $	Change in Magnitude of Differential	$R_1 = 100\Omega$, Figure 1				±0.2	V
1 0021	Output Voltage (Note 5)	$R_L = 54\Omega$ Figure 1 and Figure 2	V _{CM} = 0V				
V _{oc}	Common Mode Output Voltage (Note 6)	$R_L = 54\Omega \text{ or } 100\Omega$				3.0	V
Δ V _{oc}	Change in Magnitude of Common Mode	Figure 1				±0.2	V
	Output Voltage (Note 5)						
l _o	Output Current with Power Off	$V_{CC} = 0V, V_{O} = -7.0V \text{ to } +12V$				±100	μA
l _{oz}	High Impedance State Output Current	$V_{O} = -7.0V$ to +12V			±50	±200	μA
I _{IH}	Input Current HIGH	V ₁ = 2.7V				20	μA
I _{IL}	Input Current LOW	$V_{1} = 0.5V$				-100	μA
l _{os}	Short Circuit Output Current	V _O = -7.0V				-250	
	(Note 10)	$V_{O} = 0V$ $V_{O} = V_{CC}$				-150	mA
						150	
		V _O = 12V				250	1
I _{cc}	Supply Current	No Load	Outputs Enabled			35	mA
			Outputs Disabled			40	1
RECEIVER	SECTION		•				
V _{TH}	Differential Input	V _O = 2.7V, I _O = -0.4	⊧mA			0.2	V
	High Threshold Voltage						
V _{TL}	Differential Input Low	$V_{O} = 0.5V, I_{O} = 8.0 \text{ mA}$		-0.2			V
	Threshold Voltage (Note 7)						
$V_{T+}-V_{T-}$	Hysteresis (Note 8)	V _{CM} = 0V			50		mV
V _{IH}	Enable Input Voltage HIGH			2.0			V
V _{IL}	Enable Input Voltage LOW					0.8	V

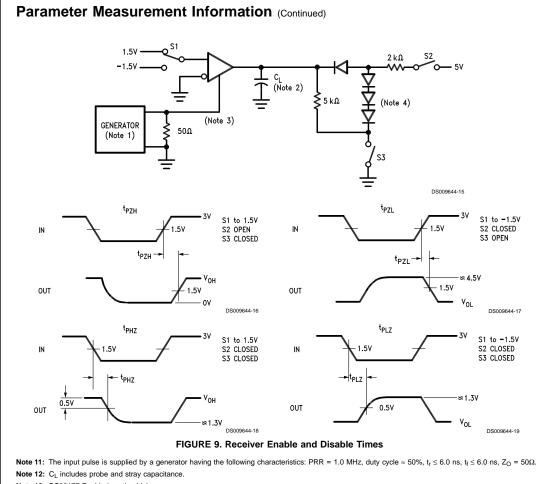
Electrical Characteristics (Notes 3, 4) (Continued)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
RECEIVER	SECTION						
V _{IC}	Enable Input Clamp Voltage	I _I = -18 mA				-1.5	V
V _{OH}	High Level Output Voltage	V _{ID} = 200 mV, I _{OH}	= –400 μA, <i>Figure 3</i>	2.7			V
V _{OL}	Low Level Output Voltage	V _{ID} = -200 mV,	I _{OL} = 8.0 mA			0.45	V
		Figure 3	I _{OL} = 16 mA			0.50	1
l _{oz}	High-Impedance State Output	V _O = 0.4V	$V_{O} = 0.4V$			-360	μA
		V _O = 2.4V				20	1
I _I	Line Input Current (Note 9)	Other Input = 0V	V ₁ = 12V			1.0	mA
			$V_1 = -7.0V$			-0.8]
IIH	Enable Input Current HIGH	V _{IH} = 2.7V	•			20	μA
I _{IL}	Enable Input Current LOW	$V_{IL} = 0.4V$				-100	μA
R _I	Input Resistance				12		kΩ
l _{os}	Short Circuit Output Current	(Note 10)		-15		-85	mA
I _{cc}	Supply Current (Total Package)	No Load	Outputs Enabled			35	mA
			Outputs Disabled			40	1

Drive Switching Characteristics

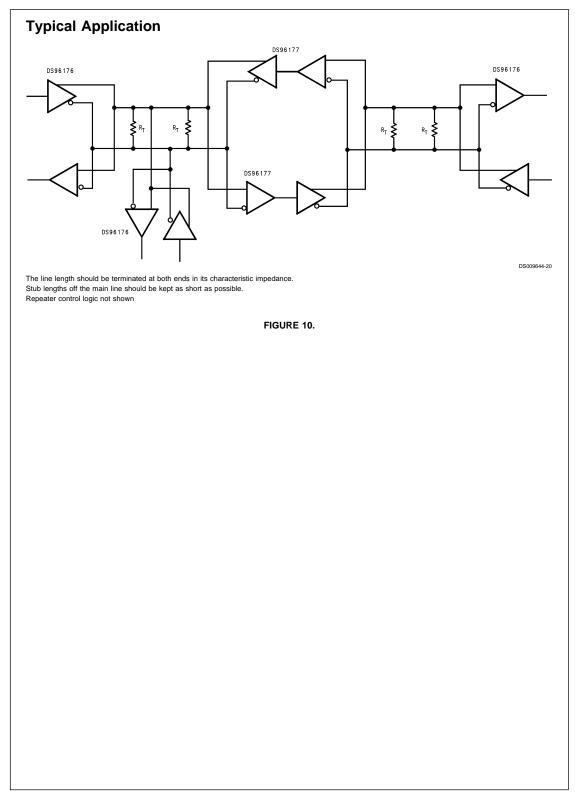

$V_{\rm CC} = 5$	5.0V, $T_A = 25^{\circ}C$					
Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{DD}	Differential Output Delay Time	$R_{L} = 60\Omega$, Figure 4		15	25	ns
t _{TD}	Differential Output Transition Time	$R_L = 60\Omega$, Figure 4		15	25	ns
t _{PLH}	Propagation Delay Time,	$R_{L} = 27\Omega$, Figure 5		12	20	ns
	Low-to-High Level Output					
t _{PHL}	Propagation Delay Time,	$R_L = 27\Omega$, Figure 5		12	20	ns
	High-to-Low Level Output					
t _{PZH}	Output Enable Time to High Level	$R_{L} = 110\Omega$, Figure 6		25	45	ns
t _{PZL}	Output Enable Time to Low Level	$R_L = 110\Omega$, Figure 7		25	40	ns
t _{PHZ}	Output Disable Time from High Level	$R_L = 110\Omega$, Figure 6		20	25	ns
t _{PLZ}	Output Disable Time from Low Level	$R_{L} = 110\Omega$, Figure 7		29	35	ns

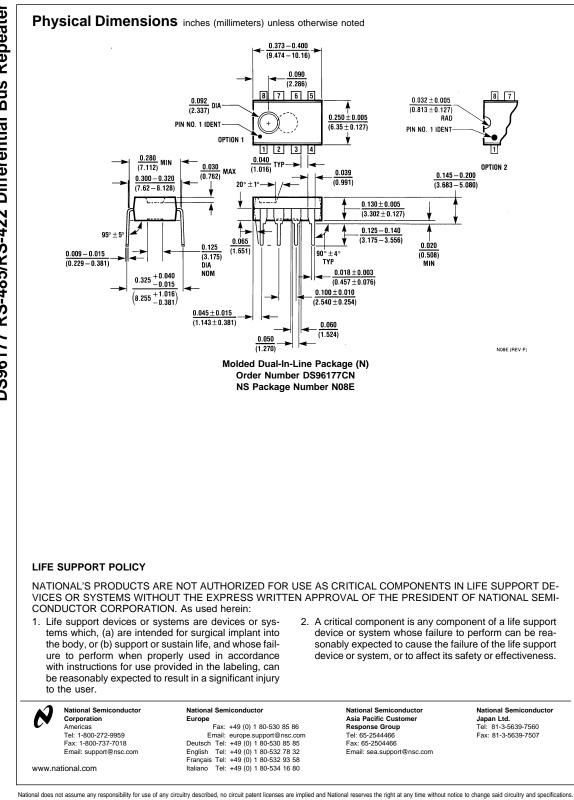

Receiver Switching Characteristics


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PLH}	Propagation Delay Time,	$V_{ID} = 0V \text{ to } 3.0V,$		16	25	ns
	Low-to-High Level Output	C _L = 15 pF, <i>Figure 8</i>				
t _{PHL}	Propagation Delay Time,			16	25	ns
	High-to-Low Level Output					
t _{PZH}	Output Enable Time to High Level	C _L = 15 pF, <i>Figure 9</i>		15	22	ns
t _{PZL}	Output Enable Time to Low Level			15	22	ns
t _{PHZ}	Output Disable Time from High Level	C _L = 5.0 pF, <i>Figure 9</i>		14	30	ns
t _{PLZ}	Output Disable Time from Low Level			24	40	ns

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation. **Note 3:** Unless otherwise specified Min/Max limits apply across the 0°C to +70°C range for the DS96177. All typicals are given for V_{CC} = 5V and T_A = 25°C.

Note 4: All currents into the device pins are positive; all currents out of the device pins are negative. All voltages are referenced to ground unless otherwise specified. Note 5: $\Delta |V_{OC}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} , V_{OC} respectively, that occur when the input is changed from a high level to a low level. Note 6: In EIA Standards RS-422A and RS-485, V_{OC} , which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS} . Note 7: The algebraic convention, when the less positive (more negative) limit is designated minimum, is used in this data sheet for common mode input voltage and threshold voltage levels only.





Note 13: DS96177 Enable is active high.

Note 14: All diodes are 1N916 or equivalent.

DS96177 RS-485/RS-422 Differential Bus Repeater